A Non-NP-Complete Algorithm for a Quasi-Fixed Polynomial Problem
نویسندگان
چکیده
منابع مشابه
A Non-NP-Complete Algorithm for a Quasi-Fixed Polynomial Problem
and Applied Analysis 3 To complete the following algorithm, we need the following elementary property. Lemma 7. Let F(x, y) ∈ R[x, y] and p(x) be an irreducible polynomial in R[x]. Consider the module equation F (x, y) = 0 (mod p (x)) . (20) The number of all solutions y = y(x) (modp(x)) is thus at most deg y F. Assumption. Throughout this algorithm, for any F(x, y) ∈ R[x, y], one can solve all...
متن کاملA Simplified NP-Complete MAXSAT Problem
It is shown that the MAX2SAT problem is NP-complete even if every variable appears in at most three clauses. However, if every variable appears in at most two clauses, it is shown that it (and even the general MAXSAT problem) can be solved in linear time. When every variable appears in at most three clauses, we give an exact algorithm for MAXSAT that takes at most O(3 n=2 n) steps where n is th...
متن کاملA simplified NP-complete satisfiability problem
Cook [l] has shown that 3-SAT, the Boolean satisfiability problem restricted to instances with exactly three variables per clause, is NP-complete. This is a tightest possible restriction on the number of variables in a clause because as Even et al. [2] demonstrate, 2-SAT is in P. Horowitz and Sahni [5] point up the importance of finding the strongest possible restrictions under which a problem ...
متن کاملFixed Point Theorems on Complete Quasi Metric Spaces Via C-class and A-Class Functions
In this paper, we present some fixed point theorems for single valued mappings on $K$-complete, $M$-complete and Symth complete quasi metric spaces. Here, for contractive condition, we consider some altering distance functions together with functions belonging to $C$-class and $A$-class. At the same time, we will consider two different type $M$ functions in contractive conditions because the qu...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2013
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2013/893045